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A NEW METHOD FOR SOLVING TRIANGULAR SYSTEMS ON
DISTRIBUTED-MEMORY MESSAGE-PASSING MULTIPROCESSORS*

GUANGYE LIt AND THOMAS F. COLEMANi

Abstract. Efficient triangular solvers for use on message-passing multiprocessors are required, in several
contexts, under the assumption that the matrix is distributed by columns (or rows) in a wrap fashion. In
this paper a new efficient parallel triangular solver for these problems is described. This new algorithm is
based on the previous method of Li and Coleman [1988] but is considerably more efficient when n/p is
relatively modest, where p is the number of processors, and n is the problem dimension.

A useful theoretical analysis is provided as well as extensive numerical results obtained on an Intel
iPSC with p=128.
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0. Introduction. An important part of many computations is the solution of a
triangular system of equations. On a sequential computer this is a simple task; however,
an effective parallel procedure on a message-passing multiprocessor is far from trivial.
Indeed, recently there has been a flurry of research activity directed at just this issue
(e.g., Heath and Romine [1988], Eisenstat et al. [1988], Li and Coleman [1988], Moler
[1986a], [1986b], and Romine and Ortega [1986]). In this paper a new algorithm is
described: this procedure is an enhancement of the recent method proposed by Li and
Coleman [1988] and represents a significant improvement.

The algorithm proposed by Li and Coleman [1988] is applicable on any message-
passing multiprocessor (with no shared memory) on which it is possible to embed a
ring. Theoretically the new algorithm proposed in this paper can get by with just ring
connectivity as well; however, this new algorithm will usually be more efficient when
there is more connectivity than this. The precise architectural design is unimportant,
provided a ring can be embedded; we have conducted all our experiments on hypercube
computers.

We assume that the system to be solved is Ux = b, where U is an upper triangular
matrix of order n. We also assume that U is distributed to the nodes (processors) by
column. This is a natural assumption in many cases. For example, the finite-difference
estimation of Jacobian matrices yields a matrix column by column. (A similar algorithm
exists for the row-distributed case; Li and Coleman [1988] discuss the base row
algorithm. The generalization of this row algorithm is analogous to the column gen-
eralization presented here.) Finally, we assume that the columns of U are assigned to
the nodes in a wrap fashion. So, for example, if the node containing column j is P(}j)
then P(j)= P(k) if and only if j =k (mod p), where there are p nodes altogether. A
wrap mapping is chosen because it seems a very reasonable choice for the matrix
factorization stage (e.g., Geist and Heath [1986], Chamberlain [1986]), which often
precedes a triangular solve.
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The original algorithm proposed by Li and Coleman [1988] is capable of effectively
solving triangular systems in many cases. In particular, numerical experience suggests
it is among the best algorithms when n/p is large; however, the original Li-Coleman
algorithm begins to lose its relative advantage as n/p decreases. Numerical results are
reported by Li and Coleman [1988], Moler [1986b], Heath and Romine [1988], and
Eisenstat et al. [1988].

The purpose of this paper is to describe a modification of the original Li-Coleman
algorithm. This modified version does not degrade in performance as p increases
relative to n. Moreover, it actually reduces to the original Li-Coleman algorithm when
n/p is relatively large and therefore the modified algorithm maintains a high level of
performance under these circumstances as well.

The proposed algorithm can be used on any distributed-memory message-passing
multiprocessor in which a ring can be embedded, provided send and receive primitives
are available. We assume that when control of a node program passes to a send
statement, the send is executed immediately, in time zero, and then control passes on
to the next executable statement in this node program. Of course this does not imply
the message is received immediately; we discuss this transfer time below. We also
assume that when control passes to a receive statement in a node program, execution
of this node program is suspended until the message is physically received, which
happens when the appropriate transfer time elapses.

This paper is organized as follows. In § 1 the new algorithm is motivated and
described; results of numerical experiments are given. An analysis of the new algorithm
is provided in § 2 (with the proofs supplied in the Appendix). In § 3 we briefly discuss
a modified version of the new algorithm—this modified version achieves a well-balanced
work distribution. Section 4 contains a summary and concluding remarks.

1. The algorithm: motivation, description, and numerical results.

1.1. Motivation. The parallel triangular solver PCTS, proposed by Li and Coleman
[1988], is based on a ring architecture and assumes the columns are assigned to the
nodes in a wrap fashion. In particular, if the node that contains column i is P(i) then
P(j)=P(k) if and only if j(mod p)=k(mod p). In the embedded ring, node
P(i(mod p)) is connected to P(i+1(mod p)) and P(i—1(mod p)), i=1:p.

Mechanically, algorithm PCTS is simple; the p —1 array SUM passes around the
ring going from P(j) to P(j—1) for j=n:2. When SUM arrives at node P(j), P(j)
determines x(j), modifies SUM (p flops), and then forwards SUM to node P(j—1).
Finally, node P(j) modifies the first j — p elements of array PSUM using column j of
U (j—p flops).

The procedure PCTS is executed by every node: the following initial conditions
are assumed.

If myname= P(n): SUM(1:p)=b(n:n—p+1)
PSUM(1:n—p)=b(1:n—p)

If myname # P(n): SUM(1:p)=0
PSUM(1;n—p)=0.

Procedure PCTS (x[1:m], SUM(1:p), PSUM(1:n—p), U(1:n,[1:m])
Forj=n:1
If myname = P(j)
Receive SUM(1:p—1) [if j<n]
x(j) < (SUM(1)+ PSUM(j))/ U(j, j)
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SUM(1:p-2)«SUMQ2:p-1)-U(—-1:j—(p—2),j)xx(j)
+PSUM(j—1:j—(p—2))
SUM(p-1)«<-U(j-(p—1),j)xx(j)+ PSUM(j—(p—1))
Send SUM(1:p—1) to node P(j—1) [ifj>1]
PSUM(1:j—p)« PSUM(1:j—p)— U(1:j—p, ) x x(j)
End

Note. For brevity, we follow the convention that if an array index is out of bounds,
the returned value is assumed to be zero. Each node has at most m = [n/p] columns
of the upper triangular matrix U.

We have listed all the arrays used, and their dimensions, in the procedure statement.
The square brackets indicate indirect addressing. For example, x[1: m] says that there
are at most m components of the vector x on this node but they are not necessarily
the first m components of the n-vector x. In particular, the components of x are
assigned to the nodes in a wrap mapping consistent with the assignment of columns.
Rather than introduce indirect indexing into the body of the procedure, we refer to
the components directly. So for example, x(j) refers to the jth component of the
solution x, not the jth component of the array x[1: m] on this node. Of course for this
reference to be valid, this component must be assigned to this node.

The mechanism behind PCTS can be described as a distributed outer product.
On each node k the array PSUM holds part of the outer product corresponding to
processed columns on that node; the traveling array SUM funnels the distributed sums
together, as needed.

Assuming p is fixed, Li and Coleman have shown that the running time of PCTS,
T(n), is a function that is linear up to a threshold value of n, after which it is quadratic.
In the quadratic range T(n) represents essentially optimal speedup (this is because
node P(n) is almost always busy doing useful floating point computations—the other
nodes are not quite as busy as P(n) due to variation in column size). However, T(n)
reflects less than optimal speed in the linear region and since the threshold value of
n can be quite large, it is worthwhile trying to improve PCTS in this region.

In Theorem 2.1 of Li and Coleman [1988] it is shown that T(n) is linear when
the busiest node, node P(n), has idle time in every cycle of SUM. Therefore, it is easy
to see that under these circumstances T(n) is dominated by the time it takes SUM to
complete a cycle. This cycle time represents the time it takes SUM to visit each node
on the ring ( p flops per node) plus the time it takes SUM to traverse the ¢ links. Hence,

(1.1) cycle time= p(¢t+p)

where ¢ is the maximum number of flops that can be executed on a single processor
during the time in which a single “small”” message is sent by one node and then received
by a waiting adjacent node.

In this context we define “small” to be a message of size less than or equal to
p/ q double precision words (64 bits each), where p is the number of processors and
q is a positive integer to be discussed later. Obviously, if SUM could be reduced to
size p/q—1, for g =1, then the time to complete a cycle would be

(1.2) cycle time = (E) p+ip
q

provided there are no other compromising ill effects. In particular, the size of g must
be restricted because (1.2) is no longer valid if SUM arrives back at node P(n) before
node P(n) is ready to process SUM. Hence, the following principle guides our choice
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of q: choose g as large as possible subject to the constraint that node P(n) is always
(just) ready to process SUM when it arrives. Note that this principle suggests we
choose g =1 for n sufficiently large, i.e., resort to the original PCTS algorithm.

The step from algorithm PCTS to the new algorithm PCTS" can best be understood,
perhaps, by considering the first cycle of PCTS in which the last p components of x
are solved for. In particular, notice that the determination of x(n — 1) does not involve
x(n)x U(n—p+1:n—2,n). Similarly, the determination of x(n—2) does not
involve x(n)x U(n—p+1:n—-3, n) nordoesitinvolve x(n—1)x U(n—p:n—-3,n—1).
Hence it may be possible to ship information across the ring (provided the communica-
tion links are there) while maintaining essentially the same algorithmic form. So, for
example, if g =2 the vector x(n)x U(n—p+1:n —p/2, n) could be shipped ““directly”
to node P(n—p/2).

Generalizing this notion, in the first cycle node P(n) computes the vector x(n) X
U(n—p+1:n,n) in q packets, each of size p/g. The first packet (SUM ) is sent to
node P(n—1), the second packet is sent to node P(n—p/q), the third packet is sent
to node P(n—2p/q), and so on. Figure 1.1 shows the communication pattern for p =16
and g =4. For simplicity we also assume that n =16.

Of course a similar communication pattern can be repeated at all nodes. Therefore,
in general during a given cycle, a node P(j) will receive g packets, each of size p/q,
before solving for the next variable and then successively computing and sending oft
q packets, each of size p/q (actually, one of the packets, SUM, is of size (p/q—1).
After this node P(j) will then modify the remaining j—p components. Figure 1.2
illustrates the incoming commmunication pattern of node P(3), for p=16 and g =4.

1.2. Description. Algorithm PCTS™ is a generalization of PCTS; when g =1 the
two algorithms are identical. In general, for =1, a p/q —1 array SUM passes around
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the ring going from P(j) to P(j—1) for j=n:2. Before SUM arrives, node P(j)
receives q—1 packets, each of size p/q, from g—1 predecessor nodes (node P(j)
modifies vector PSUM using each packet it receives). When SUM arrives at node
P(j), P(j) determines x(j), modifies SUM using p/q flops, and then forwards SUM
to node P(j—1). Node P(j) then modifies p—p/q elements of the local array PSUM
in packets of size p/gq; the first packet is sent to node P(j—p/ q), the second packet
is sent to node P(j—2p/q), and so on. Node P(j) then proceeds to modify the
remaining j — p elements of array PSUM, using the corresponding elements of column
j of U. Node P(j) is then ready to begin again, this time with respect to x(j—p).

We assume p/q is an integer and define p = p/q. The array w identifies g —1 of
the recipients of the p-packets. So for example, let k be the lowest numbered column
on a node. Then w(g—1)= P(k—p), w(qg—2)= P(k—2p) and so forth.

Procedure PCTS" (x[1:m], SUM(1:p), PSUM(1:n—p), U(1:n,[1:m]),
BUF(1:p),w(l:q—1))

Forj=n:1
If myname = P(j)
Fori=1:q—-1
Ifj=n—ixp

Receive BUF(1:p)
PSUM(j+p+1:j)«< PSUM(j—p+1:j)+BUF(1:p)
Receive SUM(1:p—1) [if j<n]
x(j)« (SUM(1)+ PSUM(j))/ U(j; j)
SUM(1:p—2)« SUM(2:p—1)— UG —1:j—(p—2),7) X x(j)
+PSUM(j—1:j—(p—2))
SUM(p—1)«-U(—(p—1),j)xx(j)+ PSUM(j—(p—1))
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Send SUM(1:p—1) to node P(j—1) [if j>1]
Fori=q—1:1
Ifj>(q—i)xp
PSUM(j—(g—i+1)xp+1:j—(q—i)%xp)
<«PSUM(j—(q-i+1)xp+1:j—(q—1i)xp)
—U(=(g—i+1)xp+1:j—(q—i)Xxp,j)xx(j)
Send PSUM(j—(q—i+1)Xp+1:j—(g—i) X p) to node w(i)
PSUM(1:j—p)« PSUM(Q1:j—p)—U(:j—p,j)xx(j)
End

Most architectures will not guarantee a direct link between sender and receiver
of the p-packets. In our implementation on a hypercube computer, we make no attempt
to optimize the route—we let the cube-operating system take care of it (hopefully,
some attempt is made to use idle nodes).

Obviously the choice of g plays an important role. As we mentioned before, a
reasonable guiding principle is to choose q as large as possible subject to the constraint
that when SUM arrives the receiving node is ready to process SUM. This notion can
be formalized (under some simplifying assumptions on message traffic) and an optimal
g can be determined analytically. We discuss this in § 2. Next, we present numerical
results using different values of g.

1.3. Numerical results. Our numerical results were obtained using Intel iPSC
hypercube computers. Experiments were performed using RM/Fortran, in double
precision, under release 3.0 of the operating system. Experiments with p>16 (i.e.,
p =64, p=128) were performed at Intel Scientific Computers, Beaverton, Oregon with
the help of Cleve Moler. The largest linear system we could solve in this environment
was approximately n=1700. The p =16 experiments were performed using the Intel
iPSC housed in the Advanced Computing Facility at the Cornell Center for Theory
and Simulation in Science and Engineering. This cube is outfitted with extra memory
boards allowing systems of approximate order n = 2000 to be solved. Our test problems
consisted of randomly generated linear systems.

In the graph in Fig. 1.3 we plot execution time (y-axis) versus various d values
(x-axis), where q =2 The test problem is of size n=1000 and p = 128.

Obviously the optimal choice for g in this case is ¢ =2>=8. Notice that the
difference between g =8 and g =1 is greater than a factor of 4.

As we show in § 2, the optimal choice of g is dependent on the problem size.
Nevertheless, Fig. 1.4 illustrates that this dependency is relatively mild in this environ-
ment. In particular, g =8 is almost uniformly superior for all n=1500 when p =128.

An important thing to notice is that g =1 and q =8 curves are diverging with n
and therefore the significance of g increases with n (up to a point). When n = 1500
the g =8 algorithm is approximately a factor 5 better than g = 1. Notice that for the
q=1,2,4,8 cases, T(n) is clearly linear; for g =16, 32 the plot is not quite so true;
we explain this phenomenon in § 2.1.

Interestingly, Theorem 2.1 in Li and Coleman [1988], suggests that if n is below
the threshold value (demarking the linear and quadratic regions) for a given p, then
increasing the number of nodes p, while keeping n fixed, will cause the execution time
to increase. It turns out that this is true in practice as well as theory. However, the
introduction of g allows for some mitigation of this effect. Indeed, Theorem 2.3 in the
next section indicates that if n is held constant and p/q is fixed, then we can expect
the execution time to be constant with p. Figure 1.5 illustrates this remark.
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In Fig. 1.5 n is held constant at n =600 and p is varied. In the first case (g=1)
the increase in computation time with p is evident. In the second case, q is varied
always maintaining p/q = 16. In this case there is virtually no increase in computation
time.

2. Analysis. The purpose of this section is to derive an expression T(n) for the
running time of algorithm PCTS", measured in flops. The proofs are given in the
Appendix. This can easily be done, under a simplifying assumption, and the resulting
formula can be used to guide the choice of the parameter gq.

One flop reflects the time required to execute the operation y < y + ax, where aq, x, y
are scalars. We apply this definition a bit loosely, for simplicity. For example, when
the following statement in PCTS™ is executed,

PSUM (j—p+1:j)«< PSUM(j—p+1:j)+BUF(1:p)

we count one flop per assignment even though there is no multiplication. Similarly,
we count just one flop each pass through the loop

SUM(1:p=2)« SUM(2:p~1)-U(j=1:j = (p —2), ) x x(j)
+PSUM(j—1:j—(p—2))

even though there is an extra addition. .

In the results to follow, we will assume that a cross-ring message of size p2 p/q
(a p-packet in PCTS™) takes time at most rt flops, where r=1log, (p). (Of course the
minimum travel time is just ¢ flops by the definition of ) Furthermore, we assume
that message forwarding accrues no overhead cost: a message is forwarded immediately
by an intermediate node at zero cost. Finally, for simplicity we assume that n=mp
for some integer m.

t(secs)
T T
20 |- -
10 | 4
n | | \ ] . P
0 16 32 64 128

FI1G. 1.5. (n=600).



390 G. LI AND T. F. COLEMAN

It turns out that T(n) is a linear function of n, provided q and n are both less
than threshold values. We derive this expression in three stages. First, in Lemma 2.1,
we show that if g is sufficiently small, then in the first cycle, SUM is processed (p
flops) immediately upon receipt by each of the nodes P(n—1),-- -, P(n—(p—1)).
Second, Lemma 2.2 establishes that in the first cycle node P(n —p) = P(n) is also ready
to process SUM immediately upon receipt, provided we make the additional assump-
tion that n is less than a threshold value of n, n*. Finally, in Theorem 2.3 it is shown
that SUM is always processed immediately upon receipt by every node in every cycle;
the expression for T is then easily deduced.

The following reasoning leads to an intelligent upper bound on g, g*. Upon receipt
of SUM anode P(k) updates SUM in p flops and then forwards SUM to a neighboring
node on the ring. Immediately after this, p elements of PSUM are modified by P(k)
and then this p-packet is forwarded to node P(k—p). Now, when the cycling vector
SUM arrives at node P(k— p) it is important that P(k — p) be ready to process SUM.
An obvious necessary condition for this is that the cross-ring p-packet has been received
and processed by P(k — p) before SUM arrives. This consideration immediately leads
to the inequality

2p+n=pt+(p—1)p,
which yields the bound
2p
(B-1)+J(t—3)2+4rt
Unfortunately (2.0) does not quite do the job when the last p columns of U, columns
p,p—1,---,1, are processed. The reason is that SUM can travel more quickly in this
final stretch since less processing is required at each node. Specifically, in this last

cycle node P(j) processes SUM in just j flops instead of the usual p. Hence this final
stretch of p nodes leads to the inequality

IIA

(2.0) q

p(p+1)

2p+r=pt+

1

which implies

2p
(3-2t)+(2t—=3)2+8(rt +1)

(2.0 q=

It is easy to see that (2.0')=>(2.0) whenever g = p/2, and since this latter condition is
highly reasonable, we define the upper bound for g,

g* =min {E’ 2p }
2 3-20)+V(21-3)>+8(rt+1)
LEMMA 2.1. If ¢ = q* then, in the first cycle, SUM travels
P(n)»>P(n—1)>--->P(n—(p~1))

in time pp+ (p—1)t flops (i.e., without delay).
Node P(n—p) will be ready for SUM in the first cycle, provided n is less than
a threshold value n*:

n*=p(t+p—1)+p.

Note that n* depends on g; n*(q) is monotonically decreasing as g increases.
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LEMMA 2.2. If ¢=q* and n=n*(q) then, in the first cycle, node P(n) is ready to
process SUM upon arrival (at time p(t+ p)).

THEOREM 2.3. Ifq = q* and n = n*(q) then the total running time of PCTS" satisfies
p(p—1)

T=(+pn-EL=1

2.1. Remarks on Theorem 2.3. The main practical importance of Theorem 2.3 is
that it can be used to guide the choice of g. Specifically, T decreases as g increases
(for fixed p, n, t) and therefore the optimal value of g, g, is attained by increasing g
until either n=n*(q) or g = g*, whichever comes first. Therefore g, is given by

gy = max {1, min {q*’ [;;p——(pga-—l)i—)-]}}

Let us now consider how this theoretical estimate matches our computational
experience reported in § 1. We have estimated ¢ =40 on the Intel iPSC (release (3.0)).
Using this estimate and p = 128 we obtain ¢* = 19. Hence if n = 1000 then 4x=q*=19.
Considering the results given in Figs. 1.3 and 1.4, we see that this estimate is a bit
high: i.e., the numerical results clearly indicate that g =8 is superior to g = 16. Indeed,
this overestimation is typical and can be explained, we think, by considering our
assumptions. Specifically, in order to make the analysis tractable, we have assumed
that the forwarding of cross-ring messages occurs at no cost: i.e., there is no interruption
in the computational work performed by the forwarding nodes. However, as q increases
this assumption becomes increasingly questionable since, in truth, forwarding nodes
will be interrupted. Hence it is best to regard the theoretical value of g, as an upper
bound on g. Indeed, it is the violation of this assumption as q increases that accounts
for the deviation from linearity exhibited by the g = 16, 32 curves in Fig. 1.4.

If p=16then g* = 4.6 and g, = q* = 4.6, provided n = 900. This theoretical estimate
is a bit high once again, since, experimentally, we have found that the best choice for
g with n in this range is g=2. If p=64 then g, =q*=11 for n=3000. However,
experimentally we obtain the results reported in Fig. 2.1. Clearly the experimental best
choice for q is g =4 with g =8 a very close second.

It is interesting to note that the definition of the upper bound g* does not depend
on n. Hence g, will be invariant with respect to n for some range of values of n. For
example, considering the p =128 example mentioned above, we will have g, =19 for
all n=5861 (on the Intel iPSC without extra memory, this figure greatly exceeds the
storage capacity). This is of considerable practical significance because it suggests that
using a fixed value of g may be a reasonable thing to do despite the apparent dependence
of g, on n. Hence, in practice, it may not be necessary to compute g,, for every problem
in which n changes; rather, a good value of g can be chosen given p and . (Of course,
as we have mentioned in the preceding paragraph, this choice should probably be
somewhat less than the theoretical value g,.)

Theorem 2.3 is very much related to Theorem 2.1 in Li and Coleman [1988].
Indeed, if g =1 then Theorem 2.3 reduces to precisely the first half of the latter result.
Theorem 2.3 says nothing about the case when n> n*(q). The reason is that Theorem
2.1 (Li and Coleman [1986]) covers the interesting ground. In particular, if n > n*(q = 1)
then this theorem says that T is a quadratic function of n:

1 2
T=E{%+n+p(t+p)2—pt—p2+p} -1
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The case where n=n*(q=1) but n>n*(g>1) is not really of interest: the practical
choice is g =1 in this case.

It is our belief that the discrepancy between the theoretical value g, and the
observed best value of g is mainly caused by the assumption that there is no interruption
in the computational work performed by the forwarding nodes. Another contributing
factor is that the actual route of a cross-ring message is not known a priori; hence, a
bound is used in the analysis. Note that the first difficulty evaporates on a multiprocessor
with message-passing coprocessors (e.g., iPSC/2). We have not yet had the opportunity
to experiment on such a system; however, we expect g, to predict more accurately the
observed performance in this environment (it remains to be seen). Determining the
best g in practice on a multiprocessor without message-passing coprocessors is probably
best done experimentally; the theoretical value g, can be used as a bound. In addition,
as suggested by a referee, a spline analysis of T = T(n, p, q) can be used in conjunction
with observed results.

3. A rectangular triangular solver. In this section we consider an improvement to
algorithm PCTS™; however, since our numerical experiments show that the new
algorithm, RPCTS", offers only a modest gain in efficiency, we will be quite brief in
our presentation. Nevertheless, there is no question that RPCTS" is never worse and
is sometimes better than PCTS™; the improvement may be significant in some
environments.

The basic idea behind RPCTS" is based on the observation that columns of U
diminish in size from right to left: therefore, the workload endured by PCTS" is not
evenly balanced. Moreover, it is quite possible to postpone some of the work on the
larger columns until later and thereby achieve a rectangular work distribution (instead
of triangular). In particular, in every cycle of RPCTS™ each node processes a “column”
of U of about size n/2.
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The rectangular triangular solver follows. The parameter h is usually chosen to
be approximately equal to n/2. Indeed this is the choice that leads to the rectangular
work distribution and is always our choice in our reprorted experiments.

Procedure RPCTS™ (x[1:m], SUM(1:p), PSUM(1:n—p),
UQl :n,[1:m]), BUF(1:p), w(l:q—1))
I=m
Forj=n:1
If myname = P(j)
Fori=1:q9-1
Ifjsn—ixp
Receive BUF(1:p)
PSUM(j—p+1:j)« PSUM(j—p+1:j)+ BUF(1:p)
Receive SUM(1:p—1) [if j<n]
x(j) > (SUM(1)+ PSUM(j))/ U(j, j)
SUM(1:2)«SUM2:p—-1)-U(—1:j—(p—2),j)xx(j)
+PSUM@(j—-1:j—(p-2))
SUM(p—1)«—=U(j—(p—1),j)xx(j)+PSUM(j—(p—1))
Send SUM(1:p—1) to node P(j—1) [if j>1]
Fori=q—1:1
Ifj>(q—i)xp
PSUM(j—(g—i+1)xp+1:j—(q—i)xp)
«PSUM(j—(q—-i+1)xp+1:j—(g—i)Xp)
—U(j—(g—i+1)xp+1:j—(q—i)xp,j)xx(j)
Send PSUM(j—(q—i+1)xp+1:j—(g—i)xp) to node w(i)
PSUM(j—h+1:j—p)«< PSUM(j—h+1:j—p)
—U(@(—h+1:j-p,j)xx(j)
Ifj=n—h+p
fori=m:l
PSUM(j—2p+1:j—p)->PSUM(j-2p+1:j—p)
-U(j-2p+1:j—p,i)xx(i)
I=1-1
End

It is important to realize that RPCTS™ can potentially improve on PCTS" only
when n> n*(q); otherwise, the algorithms have exactly the same running time for all
feasible values of g. However, it is possible to extend the linear region beyond n*(q)
with RPCTS™. The reason for this is simply that the definition of the linear region is
driven by the size of the largest column processed—the “column” sizes used by
algorithm RPCTS" are all roughly n/2, which contrasts with a maximum column size
of n in the case of PCTS™. The following theorem formalizes this notion: notice that
the bound on n is roughly twice n*(q); the expression for T is identical to that for
PCTS". (We omit the proof, and it is very similar to the proof of Theorem 2.3.)

THEOREM 3.1. If q=q* and n=2p(t+p—2), then

T=(t+p)n——££;—9——p—-t. O

3.1. Numerical results. In Fig.3.1 we compare RPCTS" with PCTS* for p=16
and g =1. Note that the graphs are essentially indistinguishable up until n=1000 =
n*(q=1). (Theoretically this breakpoint occurs at n=900.) At this point RPCTS*
continues in a linear fashion while PCTS™ begins its quadratic phase.
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FiG.3.1. (p=16,gq=1).

4. Summary and conclusions. We have presented and analyzed a generalization
of the Li-Coleman [1988] algorithm for solving triangular systems of equations on a
multiprocessor. We have assumed that the columns of the matrix are distributed to
the nodes in a wrap fashion. We note in passing that a similar algorithm can be
constructed for the row-distributed case. This new solver is effective even when n/p
is modest, whereas the original solver degrades in performance as n/p decreases. The
new solver is applicable on a distributed-memory multiprocessor that allows for a ring
embedding; however, it is most reasonable when there is additional inter-processor
connectivity, beyond that of a ring. The exact nature of this connectivity is unimportant
though our experiments have been restricted to a hypercube multiprocessor.

Under a slightly unrealistic assumption on cross-ring traffic (i.e., nodes forward
messages at no cost) the proposed method is analytically tractable. This analysis reveals
that up to threshold values of n and parameter g, the running time is a linear function
of n. More importantly, the analysis yields a theoretically optimal choice for the
parameter g which, in practice, serves as a very useful upper bound on q.

' Finally, we note that when n/p is sufficiently large then the new algorithm reduces
to the original Li-Coleman [1988] algorithm, which is quite effective in such circum-
stances.
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Appendix. In this section we provide the proofs of the results in § 2.

Proof of Lemma 2.1. We will show that when SUM arrives at node P(n—k),
1=k =p —1, the receiving node is ready to process SUM. This will be the case if node
P(n — k) has completed processing the required | k/p| cross-ring p-packets that it will
receive in the first cycle. In particular, we will show that the time between two
p-packet arrivals is always enough to allow the first to be processed before the second
arrives. (This is true even when the second p-packet is SUM itself.) Since processing
the cross-ring p-packets is the only work that node P(n—k) must do before SUM
arrives, our desired result will follow.

Assume that p-packet i (say) is sent to node P(n—k) at time ¢;. Then, it will
arrive at P(n—k) by time t;+rt. But p-packet i+1 is not ready to be processed by
node P(n—k) until at least time ¢, +p(p+1t)— 2p (Note that p-packet i+1 may refer
to SUM.) Therefore, if
(2.1) t+rt+p=t,+p(p+1)-2p,

)

then it follows that node P(n— k) is ready to process j-packet i+ 1 upon arrival. But
(2.1) is clearly implied by the assumed bound on g and therefore the result follows. a

Proof of Lemma 2.2. By Lemma 2.1, SUM arrives at node P(n) at time p(p+1).
We must now argue that node P(n) has enough time to process column n of U, as
well as the (g —1) cross-ring p-packets that arrive in staggered fashion, before SUM
arrives. But, by algorithm PCTS*, node P(n) processes column n first before doing
the (q —1) p-packet updates. Since it is clear that the last p-packet, arriving from node
P(n— p), can be processed by P(n) before SUM arrives (provided P(n) is not otherwise
busy), we can, without loss of generality, count backward. That is, assume that P(n)
processes this last p-packet during time [p(p+1t)—p(p—1), p(p+1t)]. Similarly, we
can assume that P(n) processes the second to last j-packet during time [p(p+1)—
(2p—1), p(p+1)]. (By definition of g*, it is clear that P(n) has processed this packet
by time p(p +t) — (2p — 1).) Continuing in this fashion, assume, without loss of general-
ity, that the interval [p(p+1t)—((g—1)p—1), p(p+1)] is used to process all (g —1)
cross-ring p-packets. Hence we must only show that P(n) has finished processing
column n by time p(p+1t)—(g—1)p+1. But node P(n) is finished processing column
n of U at time n and with n=n*(q) we obtain

n=p(p+1)—((g—-1)p-1). 0

Proof of Theorem 2.3. By Lemmas 2.1 and 2.2, SUM is processed immediately
upon receipt by nodes

P(n—-1),P(n-2),--+,P(n—p)=P(n)

in the first cycle. But if node P(n —p) is free when SUM arrives in the first cycle, then
it is clear that every node will be free when SUM arrives in subsequent cycles (except
possibly when the last p columns, column p, - - -, column 1, are being processed). The
reason is simple: such nodes are in the same situation as node P(n) is in the first cycle.
In particular, each such node must process its current column of U and then the (¢ —1)
arriving p-packets before SUM returns. But since the size of the columns of U is
diminishing, and since P(n) had enough time in the first cycle (by Lemma 2.2), it
follows that each node will have sufficient time to do this.

However, it is necessary to consider the last p columns (i.e., columns p, p—
1,- - -, 1) separately because in this stretch the nodes P(p), - - -, P(1) do less work in
processing SUM. In particular, in this final stretch SUM requires i flops at node P(i),
1=i=p. Hence it is conceivable that SUM arrives at node P(j), say, with 1=j=p,
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before P(j) is ready. But it is easy to see that this cannot be the case: the bound on
g, g%, ensures that each node P(j) has enough time to process the p-packet from
P(j+p) before SUM arrives. Hence it follows that SUM is processed immediately
on arrival at all nodes during every cycle.

We are now ready to compute T and thus prove the theorem. The total running
time T is just the time for SUM to cycle around the ring m times. Since every node
is always ready to process SUM upon arrival, it is straightforward to compute this
cycling time. With respect to each column j, p <j=n, we will associate the time p+1t
which represents the time required to process SUM plus the time for SUM to travei
to the next node on the ring. Similarly, for 2=j=p column j is charged j+¢ flops;
column 1 is charged just one flop. Therefore, the total time T is just the sum of the
charges:

T=(n-p)(p+0+(F-Di+ 3 j

i=

which yields the results. 0
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